等比数列求和公式推导过程

文/ 散文网 时间: 教育随笔

  等比数列求和公式推导过程

  求和公式推导

  (1)Sn=a1+a2+a3+...+an(公比为q)

  (2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+an+a(n+1)

  (3)Sn-q*Sn=(1-q)Sn=a1-a(n+1)

  (4)a(n+1)=a1*q^n

  (5)Sn=a1(1-q^n)/(1-q)(q≠1)

  性质

  ①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

  ②在等比数列中,依次每k项之和仍成等比数列;

  ③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;

  ④若G是a、b的等比中项,则G^2=ab(G≠0);

  ⑤在等比数列中,首项a1与公比q都不为零。

  ⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q^k+1。

  ⑦数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。

  ⑧当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。

  拓展:高中等比数列公式

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

  (1)等比数列的通项公式是:An=A1×q^(n-1)

  若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

  (2) 任意两项am,an的关系为an=am·q^(n-m)

  (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

  (5) 等比求和:Sn=a1+a2+a3+.......+an

  ①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②当q=1时, Sn=n×a1(q=1)

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

等比数列求和公式推导过程相关文章:

等差数列求和公式推导(常用方法)

等差数列的前n项和公式及推导过程

等差数列求和公式推导

做三明治的过程初三英语作文

小升初英语高分作文的审题过程

《等比数列求和公式推导过程》

  等比数列求和公式推导过程  求和公式推导  (1)Sn=a1+a2+a3+...+an(公比为q)  (2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+an+a(n+1)  (3)Sn-q*Sn=(1-q)Sn=a
推荐度:
点击下载文档文档为doc格式