《有理数》教案(通用11篇)
《有理数》教案(通用11篇)
篇1:《有理数》教案
《有理数》教案
教学目标
1、知识目标 :借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标 :能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点
重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程
一、创设情境、提出问题
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础 分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决
分组讨论扣的分怎样表示?
用前面学的数能表示吗?
数怎么不够用了?
引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的 数.三、巩固练习
1、用正数或负数表示下列各题中的数量:
(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;
(2)球赛时,如果胜2局记作+2,那么-2表示______;
(3)若-4万表示亏损4万元,那么盈余3万元记作______;
(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.
2、下面说法中正确的是().A.“向东5米”与“向西10米”不是相反意义的量;
B.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;
C.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;
D.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.
三、小结回顾、纳入体系
学生交流回顾、讨论总结,教师补充如下:
概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.
篇2:《有理数》教案
课时课题:第二章 第七节 有理数的乘法(1)课型:新授课
授课时间: 2012年 10月 15 日,星期 一,第 一 节课 教学目标:
(1)了解有理数乘法的意义,经历探索有理数乘法法则的过程.(2)掌握有理数的乘法法则,初步发展、归纳、猜测、验证等能力.(3)知道倒数的意义.重点:
有理数乘法法则及熟练运用有理数乘法法则进行运算
难点:
确定多个有理数乘法中的符号
教法及学法指导:
本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.本节是在有理数的加减运算之后,进一步讲解有理数的乘法运算。通过生活中的实例引入关于负数乘法的运算过程,同时通过小组进行讨论,议一议,有理数乘法的同号和异号的乘法的规律,得到有理数的乘法法则,利用例1的计算巩固法则,进而引出有理数的倒数概念,通过了例2的计算,探索规律,得出有理数乘法法则的拓展规律,培养了学生的自学能力和小组探究的能力.课前准备:
制作课件,学生课前进行相关调查及预习工作.教学过程:
一、回顾旧知
师:同学们,我们大家在此以前已经学习了有理数的加法和减法运算,请看下面的题目:
投影展示 5+5+5+5=
(-5)+(-5)+(-5)+(-5)=
学生口答:5+5+5+5=20;(-5)+(-5)+(-5)+(-5)=-20 师:这样的加法能否转换为乘法,如何转化?
生:5+5+5+5可以看作4×5,(-5)+(-5)+(-5)+(-5)也可以看作4×(-5); 师:小学学习的运算是在有理数的什么范围中进行的?
(第七组)这组同学,利用的是我们课本上结论,说明我们的同学回家是预习了,学了就能用,也很好.师:通过大家的讨论,我们现在来归纳一下两个有理数相乘可以分为哪几类,他们存在什么规律?大家研究一下?
生1:有理数的乘法可分为四类:正数乘以正数;正数乘以负数;负数乘以正数;负数乘以负数。
生2:我认为他回答的不正确,应为:有理数的乘法可分为三类:
正数乘以正数;正数乘以负数;负数乘以负数。因为:正数乘以负数、负数乘以正数是一样的; 生3:我认为他们回答得还不够全面,都没考虑0。教师总结:生1:把我们已学的四种情况都概括了;
生2:把异号的两数相乘纳为一种也不错,主要是利用自己的经验;
生3:作了全面的补充,把前两位同学没考虑到的问题都想到了,说明思维很严密。
整理一下,可以分为三大类:
一、同号的两个有理数相乘
二、异号的两个有理数相乘
三、0和有理数相乘
师:下面再请大家根据刚才的内容归纳一下两个有理数相乘的乘法法则: 从一般到特殊,引导学生思考
生1:同号的两个有理数相乘符号为正,并把绝对值相乘;
生2:异号的两个有理数相乘符号为负号,并把绝对值相乘; 生3:0与任何有理数相乘,积为0。教师总结概括并板书:
两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.
给出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
让学生自主学习发现结论,体验成功的喜悦,培养数学的学习兴趣,通过上述的结论的应用发现规律掌握规律
四、尝试做题,巩固新知
1、算一算:
(-7)×3
(-48)×(-3)(-6.5)×(-7.2)
(-3)×3 强调指出:
(1)法则只适用于两个有理数相乘;
(2)结果强调两部分:一是符号,二是绝对值;(3)比较易混的是:“负负得正”和“异号得负”。
2、典例讲析,规范做题
例1 计算:
(1)(-4)×5
(2)(-5)×(—7)
(3)(-381)×(-)(4)(-3)×(-)833教师引导学生规范解题过程
篇3:“有理数”测试卷
想一想:
(1)你会怎样帮助小苏同学解决这个疑惑呢?
(2)试在同一数轴上表示出2014,-2014以及它们的倒数;请说一说你对像2014,-2014这类数的倒数的认识.
4.【例题再解】(人教版教材第30页,例2)用正负数表示气温的变化量,上升为正,下降为负. 登山队攀登一座山峰,每登高1 km气温的变化量为-6℃,攀登3 km后,气温有什么变化?
【变式练习】若山脚下此时气温为20℃,试问登山队攀登到3 km后,气温是多少呢?
【设计问题】受上面“变式练习”的启发,请你也围绕教材例题设计一个问题,并解答.
5. 下面是按一定规律排列且形式相似的一列数:
(1)试写出第n个数的式子:__________________________;
(2)试猜想第2014个数、第2015个数的大小,并写一写你是怎么想的.
参考答案
1. 答案不惟一,只要理由正确即可.
2. 答案不惟一,如-2;(1)2,2;(2)>.
3.(1)更改单位长度即可;(2)数的绝对值越大,离原点就越远,但它们的倒数却无限逼近原点.(只要意思接近即可,渗透极限思想以及引导同学们欣赏数学的奇异性)
4.【例题再解】解:(-6)×3=-18. 答:气温下降18℃.
【变式练习】解:由上一问可列算式:20+(-18)=2(℃).
【设计问题】若登山队从山脚下攀登3 km后的温度为2℃,问此时山脚下的温度是多少呢?
解:2(-18)=20 (℃).
篇4:有理数为何“有理”
在一所学校里,一名七年级的学生问数学老师:“老师,您课上讲,有理数是整数和分数的总称. ‘有理’,就是有道理的意思,我不明白,整数和分数这两种数有什么道理啦 ?”
我在旁边听了后心想:多么好的提问!这种强烈的求知欲正是我们求之不得的呢!老师会怎么回答呢?
“这是数学上的规定,没有为什么 !”
对此,孙老师评价说:“太遗憾了!太残酷了!几经如此,学生宝贵的思想火花便将熄灭,学习时不再思考,刻板记忆,不求甚解,渐渐地,思维也就麻木了.”
孙老师说:“整数、分数统称有理数是有原因的,这是翻译上的一个差错. 日本人把rational number译成了‘有理数’,我们又将其译成了中文.在这里,译者只知道rational最常用的意义——合乎情理的,一般字典也只有这个译法,但rational还有另外一个意思——可比的. rational number是指‘可以被精确地表示为两个整数之比的数’ .”
篇5:有理数减法教案
5.有理数的减法
时间:2017.09.20 备课组:数学组
一、学习目标:
1.理解掌握有理数的减法法则.
2.会进行有理数的减法运算.
二、学习重点:有理数减法法则和运算.
三、学习难点:有理数减法法则的推导.
四、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.
五、课前准备:课件 三角尺
六、教学过程设计:
(一)创设情境,引入新课
1、计算(口答)
(1)7+(-3);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3).
2、用算式表示下列情境.
先请同学读出右图的第一支温度计所示温度.学生口答为 5℃,现上升15℃(演示动画,让学生仔细观察这一过程),到20℃处停止.学生通过观察口答表示这一情境的算式:5+15=20(此举进一步揭示加法在实际中的应用).第二支温度计上温度为15℃,现下降10℃(演示动画,让学生仔细观察这一过程),到5℃处停止.学生通过观察回答用加法表示这一情境的算式:15+(-10)=5.你能从图中观察出15℃比5℃高多少吗?你是怎样得出结论的?能用算式表示吗?得:15-5=10.这是一个小学里就已经学过的减法问题. 再观察第三支温度计,它显示的温度是-10℃,现上升15℃(演示动画,让学生仔细观察这一过程),到5℃处停止.学生通过观察回答表示这一情境的算式:(-10)+15=5;温度又从5℃下降到-10℃(继续演示动画),你能从图中看出哪个温度更高些吗?高多少?你是怎样得出这个结论的?能用算式表示吗?
学生讨论后,尝试给出算式5-(-10)=?是15吗?这个算式该如何计算呢?这就是我们今天要学的内容.
这是一个具体实例,教师创设问题情境,激发学生的认知兴趣,渗透了数形结合的思想,把具体实例抽象成数学问题,从而点明本节课的课题――有理数的减法.
(二)师生共同探索新知
活动内容:通过对温度计的观察,计算温差,感知有理数减法法则。
问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗?
先请同桌两位同学相互讨论交流,然后请2~3个学生发言.
问题2:如何计算4-(-3)呢?
先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数。如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.即X+(-3)=4,因为7+(-3)=4,所以4-(-3)=7(+4)-(-3)=+7(+4)+(+3)=+7 让学生比较上面这两个算式并讨论后得出:(+4)-(-3)=(+4)+(+3)
再给出以下算式:
减法 加法
(+5)-(+2)=+
3(+5)+(-2)=+3 继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)问题3:请同学们想一想,4十?=7? 请学生回答,教师板书:4+(+3)= 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:
4-(-3)=4+(+3).
这时教师问:你发现这个等式有什么特点?
学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:
(1)把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?
(2)计算9-8,9+(一8),15一7,15+(一7),你发现了什么?
请小组代表全班汇报,教师在此基础上归纳: 有理数减法法则:减去一个数,等于加上这个数的相反数.
问题4:你能够用字母把法则表示出来吗?
a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数
减数变号(减法============加法)
例1.计算 :(1)(-3)-(-5);
(2)0(-4.8);(2)(-3 -2)-5 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米? 活动目的:通过例题教学使学生巩固方法,初步具备解决问题的能力。讲解时注意让学生复述有理数法减法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。让学生感受8848米这个高度,培养学生的数感。
(四)尝试反馈,巩固练习
教科书练习题1、2 学生活动:1题找学生口答,2题指名学生板演,其他同学做在练习本上.
我编你答.应用课件随机出题,学生抢答.(五)、课堂小结:通过本节课学习你学到了什么?
(六)布置作业
1、选做题习题1.6第1、2、3题中的奇数题;
2、必做题:第4、5题中的偶数题
七、板书设计
课题
1、有理数减法法则
3、练习
2、例1
八、课后反思
本案例从数学知识的形成过程设计问题,使得学生的认知能力与知识的形成不分离,达到结伴而行的目的。主要方法与效果有以下几点:
(1)以问题情境为导引。为学生提供丰富的感性材料,这有助于学生积极参与,调动学生的积极性,树立学习的自信心。
篇6:有理数减法教案
1.知识与技能
使学生会使用计算器进行有理数的加减运算.
2.过程与方法
尝试从不同角度寻求解决问题的方法,并能有效地解决问题.
3.情感、态度与价值观
有克服困难和运用知识解决问题的成功体验.
教学重点难点
重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.
难点:准确地用计算器进行加减运算.
教与学互动设计
观察体验 大家看这样一个算式:-15.13+4.85+(-7.69)-(-13.38)要计算出它的值,你能有什么方法吗?
篇7:《有理数的除法》教案
3.借助有理数乘法知识,通过归纳、类比等方法获得有理数的除法法则.重点 有理数的除法法则
难点 理解商的符号及其绝对值与被除数和除数的关系
教学过程
一、自主学习
(一)、自学课文
(二)、导学练习
1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?
放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?
从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?
2.请找出下列有理数的倒数
-4 3-8--1-3.53.比较大小:8(-4)_______8(-15)3_______(-15)
(-1)(-2)(-1)(-)
计算:(1)(-15)(-3)=(2)(-12)(-)=
(3)(-8)(-)=(4)0(-)=
通过比较、计算,你能归纳出有理数的除法法则吗?
有理数的除法法则:
(或换一种表达方法为):
用字母表示除法法则:
4.课本第35页练习题
(三)自学疑难摘要:
组长检查等级: 组长签名:
二 合作探究
例1 计算:
(1)(-18)6(2)(-)
(3)(4)-3.5(-)
注意:乘除混合运算该怎么做呢?
例2化简下列分数:
(1)(2)
请思考:商的符号及绝对值同被除数和除数有什么关系?
三、展示提升
1、每个同学自主完成二中的练习后先在小组内交流讨论。
2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。
3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
四、反馈与检测
1.计算84(-7)等于().A.-12 B.12 C.-14 D.14
2.-的倒数是().A.-B.C.D.-2
3.下列说法错误的是().A.任何有理数都有倒数 B.互为倒数的两数的积等于1
C.互为倒数的两数符号相同 D.1和其本身互为倒数
4.计算:(1)(-40)(-12)(2)(-60)(+3)
(3)(-30)(-15)(4)(-0.33)(+)(-9)
(5)(-2)(-5)(-3)(6)(-81)2(-16)
5.(1)两数的积是1,已知一数是-2,求另一数.(2)两数的商是-3,已知被除数4,求除数.6.解下列方程:
(1)-3.4x=-6.8(2)-x=-
7.课本第36页练习题
组长检查等级: 组长签名:
篇8:有理数难点分析
一、绝对值的化简和求值
绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.
绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数. 可用字母a表示如下:
剖析 1“一个数的绝对值就是数轴上表示该数的点与原点的距离”,而距离是非负的,也就是说任何一个数的绝对值都是非负数,即|a|≥0.
2互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等.
1. 若2<x<4,化简|2-x| - |x-4| .
2. 如果有理数a、b、c在数轴上的位置如右上图所示,化简|a+b| - |b-1| - |a-c|- |1-c| .
3. 化简3| x-2| - |x+4| .
二、有理数的乘方
有理数的乘方的定义:求几个相同因数a的积的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“an”,其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘a,乘方的结果叫做幂.
正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数,0的任何非0正数次幂都是0,1的任何非0次幂都是1,-1的偶数次幂是1,-1的奇数次幂是-1.
剖析 1“an”所表示的意义是n个a相乘,不是n乘a;2(-a)n≠-an. 因为(-a)n表示n个-a相乘,而-an表示n个a的乘积的相反数;3任何数的偶次幂都是非负数,即a2n≥0.
4. 填空:
1 23的意义是____________;
2 -54的意义是__________;
3≠- 76≠5的意义是_________;
5.若a,b(a≠0,b≠0)互为相反数,n是自然数,则().
A. a2n和b2n互为相反数
B. a2n+1和b2n+1互为相反数
C. a2和b2互为相反数
D. an和bn互为相反数
三、有理数的混合运算
进行有理数混合运算的关键是熟练掌握加减、乘除、乘方的运算法则,运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.
进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.
剖析 有理数混合运算的关键是把握好运算顺序,即先乘方、再乘除、最后加减;有括号的先算括号;若是同级运算,应按照从左到右的顺序进行.
6. 计算:1.
篇9:初中数学有理数教案
一、教学目标
1、认知目标:1)数的意义
2)正数和负数的概念
2、能力目标:1)能比较数的大小
2)渗透将实际问题抽象成数学模型的思想 3)增强学生对实际问题的数学思维能力
3、情感目标:培养学生的敏锐观察力
二、教学重难点
重点:正数负数的概念及意义
难点:将实际问题数学化(建立数学模型)
三、教学过程
(一)创设情境,引入课题
小a有10斤苹果,以3元每斤的价格卖给小n4斤。(这里使用小a小n代替小明小红,目的是使学生习惯用字母来表示一些常数项,这有利于后续的数学学习)
1)现在小a的苹果数量 2)小a的收入,小n的支出
引出:我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,于是就产生了正数和负数。(哪种意义的量规定为正,是可以任意选定的(如上升2米规定为+2米或-2米都可以))
【设计意图:从实际问题中引出正数负数的概念,让学生能够快速的从实际问题中抽象出数学模型】
(二)拓展延伸,练习巩固
1、日常生活中用到正数负数的实例:财务的收支,温度的表示,海拔的高低等。
2、正数负数的分界线——0 0既不是正数也不是负数,它是个整数,它表示正数和负数的分界。
对于正数和负数的概念,不能简单理解为带“+”的数是正数,带“-”的数是负数。如+0是0,-0也是0;当a<0时,-a就是正数。
(三)探究新知,增加储备
10-4=6的数学意义和实际意义 数学意义:10-4=6 实际意义:+10+(-4)=+6(+8和-3就是实际中两个意义相反的量)【设计意图:将数学应用到实际就需要清楚数学模型的实际含义】
(四)课堂小结,布置作业
1,本节课讲了哪些用到正负数的实例 2,你能否再举出类似的例子 3,作业:练习巩固2、3、4 四,教学设计说明
1、设计的主要思路:从基本的日常生活中引出正负数的概念,让学生充分理解正负的意义,为后阶段的学习打下基础。
篇10:有理数的加法教案
【教学目标】
1.通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。
2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。
3.掌握有理数加法法则,并能准确地进行有理数加法运算。
【学习重点、难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;
难点:异号两数如何相加的法则。
【学习过程】
一、预习自学:
1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?
2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?
3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?
4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?
5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?
6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?
请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)
二、教师点拨
知识点一:引导学生对前面的七个加法运算进行合理的分类
同号两数相加:(+5)+(+3)= ______.(-5)+(-3)= ______
异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;
(+5)+(-5)=______
一数与零相加:(-5)+0=______;
知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?
结论:有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
三.例题精讲;例1(学生自学,教师示范。注意解题步骤)
四、课堂练习;36页随堂练习与习题2.41.2.3(小组展示交流)
五、当堂检测;
1.用生活中的事例说明下列算是的意义,并计算出结果:
(-2)+(-3);(-3)+2
2.有理数加法法则:
绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得.3.计算:(+15)+(-7);(-39)+(-21);
篇11:有理数的加法教案
一、教学目标
1.知识与技能:掌握有理数加法法则和加法运算律;能够熟练运用有理数的加法法则和运算律进行计算,并且会运用有理数加法运算律简化运算;
2.过程与方法:经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法; 3.情感态度与价值观:在学习探索的过程中,培养学生的观察,比较,归纳及运算的能力;
二、教学重点和难点
教学重点:有理数的加法法则以及加法运算律;
教学难点:异号两数相加的加法法则以及运算律的运用;
三、教学手段
现代课堂教学手段;
四、教学方法 启发式教学;
五、教学过程
(一)创设情境,导入新课
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
【问】两个有理数相加,有多少种不同的情形? 为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ② 现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; ③ 上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; ④
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; ⑤
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2; ⑥ 上半场打平,下半场也打平,全场仍是平局,也就是 0+0=0. ⑦
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.
【问】现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算? 这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0; 3.一个数同0相加,仍得这个数.
(二)应用举例,变式练习【例】计算下列算式的结果,并说明理由:
(1)(+4)+(+7);(2)(-4)+(-7);(3)(+4)+(-7);(4)(+4)+(-4);(5)(-9)+0;(6)0+(+2);(7)0+0; 学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
全班学生书面练习,学生板演,教师对学生板演进行讲评.
(三)从学生原有认知结构提出问题 【问】1.叙述有理数的加法法则. 2.“有理数加法”与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算. 3.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18;(2)6.18+(-9.18);(3)(-2.37)+(-4.63); 4.计算下列各题:
(1)[8+(-5)]+(-4);(2)8+[(-5)+(-4)];(3)[(-7)+(-10)]+(-11);(4)(-7)+[(-10)+(-11)];(5)[(-22)+(-27)]+(+27);
(四)共同探索,归纳有理数运算律 通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变. 用代数式表示上面一段话:a+b=b+a.
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. 用代数式表示上面一段话:(a+b)+c=a+(b+c). 这里a,b,c表示任意三个有理数.
(五)运用举例,变式练习
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加. 【例】计算16+(-25)+24+(-32).
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便. 解:16+(-25)+24+(-32)=16+24+(-25)+(-32)(加法交换律)=[16+24]+[(-25)+(-32)](加法结合律)=40+(-57)(同号相加法则)=-17.(异号相加法则)本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数.
【例】1.计算:(要求注理由)(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4); 2.计算:(要求注理由)(1)(-8)+10+2+(-1);(2)5+(-6)+3+9+(-4)+(-7); 3.当a=-11,b=8,c=-14时,求下列代数式的值:(1)a+b;(2)a+c;(3)a+a+a;(4)a+b+c.
利用有理数的加法解下列各题(第4~8题):
4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞 行高度是多少?
5.存折中有450元,取出80元,又存入150元以后,存折中还有多 半夜的气温是多少?
7.小吃店一周中每天的盈亏情况如下(盈余为正):
128.3元,-25.6元,-15元,27元,-7元,36.5元,98元 一周总的盈亏情况如何?
8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:
1.5,-3,2,-0.5,1,-2,-2,-2.5 8筐白菜的重量是多少?
(六)小结
这节课,我们从实例出发,经过比较,归纳,得出了有理数的加法法则和有理数的加法运算律,在应用有理数的加法法则时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。对于有理数加法的运算律的应用,我们要注意观察,探究简便运算的特点,让计算更加快捷,简单。
(七)布置作业篇二:《有理数的加法》教学设计 《有理数的加法》教学设计
一、课程目标
(一)知识与技能目标
1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想
(三)情感态度与价值观目标
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:
重点:理解和运用有理数的加法法则
难点:理解有理数加法法则,尤其是理解异号两数相加的法则
三、教学组织与教材处理:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);
行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);
省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。
另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
四、教学流程
(一)引入新知---新
师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1”,净胜球数应是(+1)+(-1)=0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1)+(+1)=0的式子说明。
(二)探究新知---行
1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个
表示 +1,用 1个 表示 -1,那么就表示0。
2、师:首先我们一起来计算(+2)+(+3)。教师课件演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4)+ 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。
3、师:同学们,其实我们还可以用数轴来表示刚才
这几道题的运算过程。课件出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个 单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的方法运算(-3)+2,3+(-2),(-4)+ 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)
(三)发现新知---省
1、教师引导学生观察刚才的五个例子:
问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?
师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。
2、师生共同得出有理数加法法则
同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。
(四)运用新知---信
1、范例讲解:
例1计算下列各题: ①180+(-10); ②(-10)+(-1);③5+(-5);④ 0+(-2).教师引导学生先观察符号特征,再教师示范写出过程。解:(1)180+(-10)(异号型)=+(180-10)(取绝对值较大的数的符号,=170 并用较大的绝对值减去较小的绝对值)②(-10)+(-1)(同号型)=-(10+1)(取相同的符号,并把绝对值相加)对于③④ 小题,可以让学生口答。
2、解后思:
教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话: ①确定类型、②确定符号、③确定绝对值。
3、说一说
(口答)确定下列各题中的符号,并说明理由:(1)(+5)+(+ 7);(2)(- 10)+(- 3)(3)(+ 6)+(-5)(4)(+ 3)+(-8)注:此题意在强化对有理数加法的符号判断,特别是异号的情形着重反馈矫正
4、练一练
1、计算下列各式:(1)(-25)+(-7);(2)(-13)+5;(3)(-23)+0;(4)45+(-45)。
2、土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少? 注:此两题意在对有理数加法法则的巩固和引导学生运用有理数的加法解决实际问题。第一题教师先让学生独立完成,并请四个学生演板。做完后小组之间开展互评,正误怎样?有什么值得改进的地方?对于第二题教师请男女两个同学比赛进行演板,师给与评价。
5、想一想
请根据 式子(-4)+3,举出一个恰当的生活情境;(聪明的你能举出多少种新情境?)注:此例意在引导学生关注“生活中的数学”。对于学生有创意的情境师应给与积极评价。(符合此式子的情境有很多,如:温度变化问题、足球净胜球问题、方向行走问题、收入支出问题、水位涨落问题等等)
(五)反省新知---谈一谈 我学到了什么?教师引导学生自我反省、自我评价。师生共同总结:
1、有理数的加法法则,2、运算时的基本思路。
(六)挑战老师
师说:通过今天的学习,老师认为:“ 两个有理数相加,和一定大于其中一个加数”。老师的说法正确吗?请聪明的你举例说明。
(七)超越自我
分别在右图的圆圈内填上彼此不相等的数,使得 条线上的数之和为零,你有几种填法?
(八)布置作业。
篇三:有理数的加法教案1 《有理数的加法》教案
师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。(教师板书课题:有理数的加法)
请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。生1:加数都是正数或都是负数。(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)
师:还有其他情况吗?
生2:正数与零,负数与零,或者两个都是零
师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少? ① 先向东走了5米,再向东走3米,结果怎样?
生3:向东走了8米 师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示? 生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。(教师用投影仪显示图1)②先向西走了5米,再向西走了3米,结果如何? 生5:向西走了8米。可以表示为:(-5)+(-3)=-8 [教师板书](教师用投影仪显示图2)
③ 向东走了5米,再向西走了3米,结果呢? 生6:向东走了2米。可以表示为:(+5)+(-3)=+2 [教师板(教师用投影仪显示图3)
④先向西走了5米,再向东走了3米,结果呢? 生7:向西走了2米。可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)
⑤先向东走5米,再向西走5米,结果呢? 生8:回到原地位置。可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)
⑥先向西走5米,再向东走5米,结果呢? 生9:仍回到原地位置。可以表示为:(-5)+(+5)=0 [教师板书](教师用投影仪显示图6)
师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。(教师用投影仪显示下面内容): 从河岸现在水位线开始,规定上升为正,下降为负:
①上升8cm,再上升6cm,结果怎样? ②下降8cm,再下降6cm,结果怎样?
③上升6cm,再下降8cm,结果怎样? ④下降6cm,再上升8cm,结果怎⑤上升8cm,再下降8cm,结果怎样? ⑥下降8cm,再上升0cm,结果怎样? 师:下面同学们分组讨论,互相订正。教师公布正确答案:
①上升14cm。[教师板书(+8)+(+6)=+14] ②下降14cm。[教师板书(-8)+(-6)=-14] ③下降2cm。[教师板书(+6)+(-8)=-2] ④上升2cm。[教师板书(-6)+(+8)=+2] ⑤回到原水位线。[教师板书(+8)+(-8)=0] ⑥在原水位下线下8cm。[教师板书(-8)+0=-8] 师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。
小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。
师:其他小组还有没有新的发现什么?
小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。师:这一小组的看法是否正确呢?
小组3:不正确。因为(+6)+(-8)=-2,(-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。
小组4:这句话也不对,如(+3)+(-5)=-2 中,和的符号是负的,但+3比 -5大,应改为:和的符号与绝对值大的加数符号一样。师:还有没有不同意见?
小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。师:观察仔细,很好。
师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了符号部分外,另一部分称为结果的什么? 众生:结果的绝对值
师:结果的绝对值与加数绝对值又有何关系呢?
小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。
师:请同学归纳,总结出有理数的加法规律。
小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。
师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?
小组8:有,一个数同0相加,仍是这个数。师:全班同学共同说出有理数的加法法则。教(板书):有理数加法法则:
①同号两数相加,取加数的符号,并把绝对值相加;
②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; ③一个数同0相加,仍是这个数。
(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:
1.通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。
2.以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。
上一篇:《学弈》教学设计15篇(荐)
下一篇:有理数教案十篇